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SUMMARY 

The standard least-squares finite element method for the linearized Euler equations turns out to be 
inaccurate. This method is studied in detail for a system of composite type, obtained by transformation of 
the linearized Euler equations. The shortcomings of the method are clarified and an embedding method is 
constructed. It is shown numerically that this new method is O(h2)-accurate. 
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1. INTRODUCTION 

We consider the system 

where 

w = (P, u, v)=, 

0 1 0  

O V U  

aAw aBw 
-+-= f, ax, ax, 

B=  
0 0  1 
o v u  
1 0 2v 

, f =  

The functions U, V and f (i) are given. System (1) is of composite type, i.e. one real and two complex 
characteristics occur. Equations (1) are obtained by applying Newton’s method to the in- 
compressible Euler equations. It is well known that numerical methods for (1) often lead to linear 
systems which are difficult to solve numerically. In order to avoid this problem, one may consider 
least-squares o r  embedding methods. Equation (1) is embedded in a system of second-order 
equations, with discrete approximations leading to linear systems that allow efficient solution 
methods. 

The least-squares method has been applied to the numerical solution of the steady Euler 
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equations. * * For these equations embedding methods have been investigated by Johnson3 and 
Chang and J o h n ~ o n . ~  We have applied the method of Bruneau et a1.’ to obtain numerical 
solutions of the subcritical steady shallow-water equations. However, we have encountered some 
severe problems, which are most likely caused by local inaccuracies of the method near 
boundaries. None of the above authors considers the accuracy of the least-squares method. The 
method of Bruneau et al. is based on a least-squares solution of (1). We therefore propose to study 
(1) in more detail. 

In Section 2 we present a brief account of the least-squares finite element method. In Section 3 a 
numerical test problem is defined and some numerical results are presented. In turns out that the 
method is inaccurate. In Section 4 we transform ( 1 )  by multiplying the system with the left 
eigenvector, corresponding to the real characteristic, and by introducing the linearized total 
pressure P as a new variable. The transformed system is more suitable for a detailed analysis and 
for accurate numerical computations. A drawback of the transformed system is the occurrence of 
terms which are not in conservation form. We are only interested in smooth solutions of (1) and 
therefore this is acceptable. 

In Section 5 we investigate the least-squares solution of the transformed system in more detail. 
In particular, we look at the numerical approximation along boundaries using truncation error 
analysis. In Wilders’ a single conservation equation has been studied in this manner and this 
work serves as our guide. This analysis provides a new embedding method for the numerical 
solution of the transformed system and application to the test problem of Section 3 shows that 
accurate results are obtained. In Section 6 the new embedding method is developed further in 
order to include curved boundaries and non-Cartesian grids. 

The resulting linear system in the new embedding method is not symmetrical. In Section 7 the 
iterative solution of this system is discussed. We use the CGS method (conjugate gradients 
squared).6 Following Meijerink and Van der Vorst,’ a new variant of the incomplete decomposi- 
tion with corrections only on the main diagonal is constructed and promising results are 
obtained. 

2. THE LEAST-SQUARES APPROACH 

We study (1) on Q c  R2. We define 

I=jQll-+--f l l  aAw aBw do.  

ax, ax, 2 

Let w be a minimum of I and let z be an arbitrary scalar test function. We set t, = ze,, rn = 1,2,3, 
where em denotes the mth unit vector. We have 

or 
JQ(&+%-f) aAw aBw (F+z)dQ=o, aAt,  aBt, m = l , 2 , 3 .  

Note that the inner product occurs in (3). In more detail (3) reads 

(3) 

Equations (4) are approximated in the finite-dimensional subspace spanned by isoparametric 
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bilinear quadrilateral elements $ j .  We apply the so-called product approximation or group 
formulation.2~8-’0 This means that terms like UklWl are approximated by Zj(uklwl) j  d j .  For 
example, the term in (4) obtained by setting m = k = 2,1= 3 leads to the contribution 

where 

For the computation of the integrals we use a four-point Gaussian quadrature formula. 
Let n=(n, ,  n,) denote the outward unit normal on aR. Integration by parts in (3) leads to 

+ [ a / , A T + n 2 B T ) ( 2  + - - - f  aBw z,ds=O, m=1,2,3. 
8x2 

We conclude that (3) are the Galerkin equations associated with the system of second-order 
equations 

- (.. & + BT&) (z + - f) = 0, 
8x2 

(7) 

with boundary conditions that are either essential (2, = 0) or natural. The latter imply that certain 
linear combinations of the original first-order equations should be zero on the boundary. 

Formula (7) shows that the least-squares method is equivalent with a special embedding 
method. This embedding method has been studied previously by Johnson3 and Chang and 
Johnson4 who explored finite difference methods. We remark that the finite element least-squares 
method described in (4) and ( 5 )  leads to a nine-point approximation of (7) on Cartesian grids. 
Furthermore, the matrix is symmetric and positive definite. System (1) is of composite type. The 
characteristic eigenvalues are 1 = i and 1 = 17/ii. System (7) is of composite type as well, because 
written as a system of six first-order equations we find the same eigenvalues with multiplicity two. 
Inspection of (6) tells us that the least-squares method automatically generates the correct 
number of natural boundary conditions for (7). It should be remarked that on walls the second 
and third rows of the matrix n,AT+n,BT are dependent and consequently only one natural 
condition is generated besides the essential condition of zero normal velocity. 

3. THE NUMERICAL TEST PROBLEM 

We consider a test problem on R = (0, 1) x (0, 1). In (1) we take 

u= 2 +sin zx, cos zx2, u = -cos nx, sin nx,, (8) 
i ” = O  ii=u, U=v.  

The functions in the right-hand side of (1) are chosen such that the given w = ( p ,  u, u) is the 
exact solution. Note that the velocity field is divergence-free and that the choice of the coefficients 
ii and U is natural, because (1) is obtained by applying Newton’s method. 
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According to Zajaczkowski' ' and Saxer et U Z . , ' ~  possible boundary conditions are 

u and u given at the inflow boundary x1 =0, 

u = O  at the walls x2=0, 1. 
p given at the outflow boundary x1 = 1, (9) 

We have no intentions of going deeply into inflow and outflow conditions at this stage. The 
correct inclusion of the walls is much more vital, as will become clear in the following sections. 
For our purpose it is more appropriate to replace (9) by 

p and u given at the inflow boundary x1 =0, 

u = O  at the walls x2 =0, 1. 
u given at the outflow boundary x1 = 1, (10) i 

A Cartesian equidistant grid is employed. The nodal points have indices i, j = O ,  . . . , n. We 
choose n = 8, 16,32,64. The discrete maximum-norm of the error is denoted by e,(n) and the 
discrete 1,-norm by ez(n). With e. ,  * =  co, 2, either of these norms is represented generically. We 
define 

In Table I the computed values of e. (16) and qZn are presented. Of course, the explored method is 
the least-squares finite element method from Section 2. 

The conclusion is that the least-squares method is inaccurate. We notice that the nodal point 
with the largest error is situated on the characteristic boundary, which is in agreement with 
 wilder^.^ In this work a single conservation equation is studied and it is shown that the least- 
squares scheme is inaccurate with respect to the treatment of boundaries. 

It should be remarked that the inaccuracies in Table I are by no means caused by the choice of 
the inflow and outflow conditions in (10). In the computations the conditions (10) and the often- 
employed conditions (9) have been found to differ little. 

4. A FUNDAMENTAL TRANSFORMATION 

System (1) is not very suitable for analysis. We prefer to make the hyperbolic and elliptic nature 
more transparent. The left eigenvector 1, corresponding to the real eigenvalues A = u/u, reads 

Table I. Values of e.(16) and qZn for (l), (8) 

e.(16) 0.57e0 0.14e0 

q 3 2  1.6 1.6 
q64 1.6 1.7 

q16 1.3 1.1 
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f = ( - ( U 2 + U 2 ) ,  U, I?). As in the theory of hyperbolic systems, (1) is premultiplied with 1 and the 
corresponding ‘Riemann invariant’ P is introduced, viz. 

P = p + uu + 60. (12) 
The variable P is the linearized total pressure. The transformed system reads 

where 

w = (P ,  u, v)T, 

aAw aflw 
dx, ax, 

K- +L-+CW=g, 

c1= 1, 

u = UGX, + vVx, + UVx2  - ijUX2, b = I?Ux, - GVx, + UUx,  + Vvx, 

The reason for the introduction of the parameter c1 will become clear in due course. We remark 
that in practical situations it is preferable to interchange the order of Newton linearization and 
transformation, because this simplifies the resulting expressions for a and b. 

System (13) is special in the sense that for c1= a = b = 0 a decoupling occurs. The first equation 
becomes a simple non-conservative convection equation in P, while the second and third 
equations give rise to an elliptic system in u and v. System (13) with a =a = b = 0 is therefore useful 
as a reference system. For the boundary conditions we take 

P, u given at the inflow boundary x1 =0, 

v=O at the walls x2=0, 1. 
u given at the outflow boundary x1 = 1, (14) 1 

If ct = a = b = 0, then one may actually prove that these conditions lead to a well-posed problem, 
because the Lopatinski condition for the elliptic part13 is satisfied. Note that (14) is only a slight 
modification of (lo), which facilitates a comparison at a later stage. In fact this was the reason for 
the use of (10) instead of (9). All numerical computations for (13) have been done with the 
boundary conditions (14). 

The least-squares method described in Section 2 can equally well be used to solve (13). The 
product approximation is explored with the exception of the terms corresponding to non- 
constant entries of K and L. The second-order system associated with the least-squares method 
reads 

- 

It is straightforward to apply this method to the test problem of Section 3. Substitution of (8) in 
(12) gives the corresponding ‘total pressure’. In Table I1 we present the computed values of e.(16) 
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Table 11. Values of e.(16) and qZn for (13) 

0.98e - 1 0.27e - 1 e.(16) 
q16 1.7 1.6 

q64 1.9 1.9 
9 3 2  1.8 1.8 

and q,,,. Comparison with Table I tells us that the results have improved considerably. However, 
this is surprising. The first equation in (13) reads 

which means that the main part consists of a non-conservative convection term. In Wilders' it has 
been shown that the least-squares method is inaccurate for a single conservative convection 
equation and one may wonder why these inaccuracies are absent in Table 11. In the next section 
we perform a truncation error analysis similar to that of Wilders.' This analysis explains some 
aspects of Table I1 and will guide us to a new embedding method. 

5. A NEW EMBEDDING METHOD 

We perform a truncation error analysis along characteristic boundaries. It has been shown in 
Wilders' that this approach is suitable. To avoid irrelevant details, we choose U = 1, a = b = 0 and 
g=O in (13). Furthermore, V is such that 

6 IX.! = 0 = 0 (16) 

and therefore x, = O  is a characteristic boundary. Only the first equation in the embedded system 
( 1 3 )  is important at this stage. This equation reads 

a dP d(61l+U) a(u-Vu) _ _  ) =O. 
ax,  ( ax ,  ax, ax,  

In order to prevent unnecessary complications, we assume that u and u are given functions in 
(17) and, to make the presentation more compound, we choose U = Y = O .  For the purpose of 
analysis a Newton-Cotes quadrature formula is used instead of a Gaussian formula. This 
facilitates the analysis. The molecule at the characteristic boundary is represented in Figure 1. 

The finite element equation in the boundary point 2 reads 

( P ,  - 2P,  + P3) - 
h2 
2hl 

-_ 1 
4 

. - [V3( Ps - 
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5 
4 mi' 
1 3 

2 

Figure 1. Molecule on boundary 

Let P be a smooth solution of (17), let U, = O  (characteristic boundary) and let h ,  = O(h,); then the 
truncation error e ( P )  of (18) is given by 

(19) e ( P )  = el (PI + e,(P) + O(h3, 

1 a 3 ~  

6 ax; 
e , ( P ) = - - h  -. 

For general solutions of (17), e(P)= O(h,) holds. For those solutions of (17) which are a solution of 
(13) as well, we automatically have 

The error el is due to the convective term and (22) is surprising, because in Wilders5 such a 
property had to be enforced. According to Wilders,' the relation (22) explains to some extent the 
better accuracy found in Table 11. One can pursue the argument further and improve the method 
once more by avoiding the occurrence of the error e, ,  which is easily done. Instead of (13) we 
define the following embedded system: 

e ,  ( P )  = 0. (22) 

where 

A =  [; 0 0  u .I, B= [. 1 0  v -;I. 
0 -6 u o u  

The key to success in this method is that, along characteristic boundaries, 

e(P)  = O(hZ) (24) 
for those solutions of (17) which are a solution of (13) as well. Just as for (15), the system (23) is of 
the composite type, with characteristic eigenvalues A =  f i  and A=u/u of multiplicity two. The 
required natural boundary conditions for (23) are obtained in a straightforward way after partial 
integration of (23). It has been found numerically that the matrix CT in (15) is of little importance 
and therefore this matrix has been omitted in the new embedding method. 

We now return to the computations of Sections 3 and 4. The new embedding method, called 
Emb, is explored. The details of the computations are exactly as in Section 4. In Table 111 the 
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Table 111. Values of e.(16) and q2n for (13), 
using Emb 

e.(16) 050e - 1 0.13e- 1 
q16 1.8 1.9 
9 3 2  1 -9 1 -9 
q64 1.9 2.0 

computed values of e .  (16) and q2. are presented. Comparison with Table I1 tells us that the 
results have improved once more. However, one may argue that this improvement is not vital. In 
the next section it turns out that the method Emb can easily be adapted to include an accurate 
treatment of curved boundaries as well. In the least-squares method leading to Table I1 this is an 
open question. 

Comparison of Tables I and 111 leads to the conclusion that the new method Emb, which is 
based on the transformed system (1 3), improves the original least-squares method for (1) 
considerably. In fact on a moderate sized grid, say 16 x 16, the error in the new method is more 
than a factor of ten smaller. 

Finally, we observe that a more efficient implementation of the embedding method is possible. 
Inspection of (23) shows that in the second and third equations four combinations of the form T 
occur, where 

For smooth solutions such terms vanish and may therefore be deleted. However, one must 
impose the original natural boundary conditions, which means that deleting such terms implies 
the occurrence of boundary integrals and consequently boundary elements. 

6. ON THE INCLUSION OF CURVED WALLS 

Until now our work has been concerned with straight walls. In this section the inclusion of curved 
walls is described. The relation (24) is only valid along straight walls and in fact it turns out that 
the accuracy of the embedding method Emb declines in some cases with curved walls. Therefore 
we have to develop the method further. In the new method, called EmbChb, inaccuracies along 
curved characteristic boundaries are absent. The method EmbChb consists of Emb plus a 
modification involving the implementation of a characteristic boundary scheme. For a single 
conservation equation this approach has already been considered in  wilder^.^ 

Let I- be a characteristic boundary with parametric representation (xl(t), x2(t)), where 

dx,/dt = ii, dx2/dt = 6. (25) 

(26) 

The characteristic form of the first equation of (13) along r reads 

dP/dt + uu + bv = g'". 

On r the first equation of (23) is replaced by 
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Further details of the implementation can be found in Wilders.’ We only remark that the 
implementation is not very difficult, because r is a part of aR, and that we have used a two-point 
Gaussian quadrature rule for the computation of integrals along r. 

In order to evaluate the new method EmbChb, we define a new test problem. Once more the 
exact solution is given by (8) with the ‘total pressure’ P computed via (12). For the lower wall we 
now choose the streamline originating in the point with co-ordinates x1 =0, x2 =0.25. Further 
details of the region and the grids remain the same. In Figure 2 the domain and grid for n = 8 is 
presented. 

On the lower boundary the normal component of the velocity is zero. The other boundary 
conditions are as in (14). The implementation of the boundary condition on the lower wall can be 
done in several ways. For example, Bruneau et a1.’ use an iterative scheme. We choose instead a 
traditional implementation. The unknowns and equations are transformed on the boundary 
using local co-ordinates. Details can be found in Pinder and GrayI4 (pp. 275 and 281) and 
Engelman et al. We only remark that we have computed the normal direction as in Pinder and 
Gray. 

Further details of the implementation remain identical to those from Section 4. In Table TV the 
computed values of e.(16) and q2” are presented. Comparison with Table 111 tells us that the 
method EmbChb performs well and one may draw the conclusion that this method turns out to 
be promising. 

7. AN ITERATIVE METHOD 

The resulting linear system in the new embedding method is not symmetrical. For the iterative 
solution the CGS method, recently developed by Sonneveld,6 has been implemented. We 
compare the number of necessary iterations for the original least-squares method LS (Section 2), 
for the least-squares method LST (transformed system, Section 4), for the new embedding method 
Emb (Section 5) and for the modified embedding method EmbChb (Section 6). The test problem 

Figure 2. The domain and grid for n= 8 

Table IV. Values of e.(16) and qZn for (13), 
using EmbChb 

e.(16) 0.34e - 1 034e - 2 
q16 1.8 1.9 
q 3 2  2.0 1.9 
964 2.0 2.0 
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on the unit square (Sections 3 and 4) is used. For LS and LST the matrix is symmetrical and in 
this case the CGS method reduces to a variant of the conjugate gradients (CG) method (speaking 
roughly two CG iterations = one CGS iteration). 

To start with, diagonal scaling is used as a preconditioner. More advanced preconditioners are 
difficult to obtain for all the above-mentioned methods simultaneously. For the methods based 
on the transformed system (13) we have succeeded in constructing a new preconditioner. This 
preconditioner is described in due course. In Table V the number of CGS iterations is presented 
(termination criterion: llpreconditioned residualll, < le  - 4). 

We may conclude that the application of the transformation from Section 4 improves the 
iterative properties. Furthermore, in the methods LST, Emb and EmbChb only minor differences 
are observed. The new preconditioner is only used here in conjunction with EmbChb, because in 
the previous sections this method has been found to be the most promising. It can be seen that the 
new preconditioner works well and in fact a fast solution method is available now. We remark 
that the results in Table IV are by no means special. In other test problems (we explicitly mention 
the one on the non-Cartesian grid of Section 6 )  similar results have been obtained. 

Finally, we give the details of the new preconditioner. A very efficient preconditioner is the 
incomplete decomposition with corrections only on the main diag~nal.’.’~. l 7  Ho wever, this 
decomposition failed to exist, even for method LS. It is well known that this situation may occur 
and, for example, in Meijerink and Van der Vow7 some suggestions are given to overcome this 
problem. Among other things, they suggest neglecting some of the Gaussian elimination correc- 
tions if the associated diagonal element becomes too small. We implemented this approach by 
neglecting a correction if the diagonal element became negative. However, this approach did not 
work well and in some cases divergence resulted. We have therefore constructed a new variant. 

For the computation of the above-mentioned incomplete decomposition one uses the re- 
currence relation 

where the aij are the elements of the original matrix and where the d i  are associated with the 
corrected diagonal elements. For Ji  we now propose 

Ji = ( i  - i, < j < i: aij ZO}. (29) 
In the case of Emb and EmbChb good results are obtained with i o =  1. Enlarging i, did not 
improve the results. In the case of LS the choice i, = 1 led to an increase of the number of CGS 
iterations (with respect to diagonal scaling). 

Table V. Number of iterations in the preconditioned CGS method 

New 
Diagonal scaling preconditioner 

Number of 
unknowns LS LST Emb EmbChb EmbChb 

198 (n = 8) 118 60 54 55 18 
782 (n= 16) 258 119 113 136 40 

3102 (n=32) 669 214 278 271 82 
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8. CONCLUSIONS 

It has been shown that the accuracy of the numerical solution of the linearized Euler equations by 
a least-squares finite element method is disappointing, but that the method can be improved 
considerably by applying a transformation to the Euler equations and by considering a new 
embedding method, similar but not identical to the least-squares method. It has been found that 
this new solution method works well, even in the case of curved boundaries and non-Cartesian 
grids. A fast iterative solution of the resulting system has been provided by a preconditioned 
conjugate gradients type method, the so-called CGS method. The preconditioning method is very 
simple and it seems that further research might be valuable. The final goal of this study is the 
development of an accurate solution method of the steady shallow-water equations. We are only 
interested in smooth solutions of these equations and therefore it is acceptable that in the 
transformed system (13) the conservation form is destroyed. The next step in this study will be the 
implementation of the new embedding method as the linear solver for the solution of the full Euler 
and shallow-water equations by Newton iteration. 
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